High Order Structure Descriptors for Scene Images
نویسندگان
چکیده
Structure information is ubiquitous in natural scene images and it plays an important role in scene representation. In this paper, third order structure statistics (TOSS) and fourth order structure statistics (FOSS) are exploited to encode higher order structure information. Afterwards, based on the radial and normal slice of TOSS and FOSS, we propose the high order structure feature: third order structure feature (TOSF) and fourth order structure feature (FOSF). It is well known that scene images are well characterized by particular arrangements of their local structures, we divide the scene image into the non-overlapping sub-regions and compute the proposed higher order structural features among them. Then a scene classification is performed by using SVM classifier with these higher order structure features. The experimental results show that higher order structure statistics can deliver image structure information well and its spatial envelope has strong discriminative ability.
منابع مشابه
Colour Appearance Descriptors for Image Browsing and Retrieval
In this paper, we focus on the development of whole-scene colour appearance descriptors for classification to be used in browsing applications. The descriptors can classify a whole-scene image into various categories of semantically-based colour appearance. Colour appearance is an important feature and has been extensively used in image-analysis, retrieval and classification. By using pre-exist...
متن کاملFaces in Places: compound query retrieval
The goal of this work is to retrieve images containing both a target person and a target scene type from a large dataset of images. At run time this compound query is handled using a face classifier trained for the person, and an image classifier trained for the scene type. We make three contributions: first, we propose a hybrid convolutional neural network architecture that produces place-desc...
متن کاملNew image descriptors based on color, texture, shape, and wavelets for object and scene image classification
This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...
متن کاملColor scene transform between images using Rosenfeld-Kak histogram matching method
In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...
متن کاملVisual descriptors for content-based retrieval of remote sensing images
In this paper we present an extensive evaluation of visual descriptors for the content-based retrieval of remote sensing images. The evaluation includes global, local, and Convolutional Neural Network (CNNs) features coupled with three different Content-Based Image Retrieval schemas. We conducted all the experiments on two publicly available datasets: the 21class UC Merced Land Use/Land Cover d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.3910 شماره
صفحات -
تاریخ انتشار 2014